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Introduction 

Motivation 
I’ve noticed many programmers I’m working with aren’t familiar with SIMD. I don’t want to stop 

writing vectorized code, the performance is just too good. Instead I’m writing this article hoping to 

educate people. 

Scope 
Reading this article, or any article at all, won’t make you an expert in the technology. I believe 

programming is not science but an applied skill. One can’t become good in it unless practicing a lot. 

This article is an overview and a starting point. 

Most of this article is focused on PC target platform. Some assembly knowledge is recommended, 

but not required, as the main focus of the article is SIMD intrinsics, supported by all modern C and 

C++ compilers. The support for them is cross-platform, same code will compile for Windows, Linux, 

legacy OSX (before ARM64 M1 switch), and couple recent generations of game consoles (except 

Nintendo which uses ARM processors). 

History Tour 
At some high level, a processor is a mechanism which executes a sequence of instructions called 

“program”. Specifically, it runs an endless loop with the following steps. 

1. Fetch an instruction at the current instruction pointer. 

2. Advance the current instruction pointer so it points to the next instruction in the program. 

3. Execute the instruction. There’re different possibilities here, an instruction can do math on 

values in registers like `inc rax`, access memory like `mov rax, qword ptr [rcx]`, do input or 

output1, or mess with the current instruction pointer, implementing jumps, loops or procedure 

calls. PC CPUs can do many of these with a single instruction, `and dword ptr [r8], 11` does both 

load, bitwise and, and store. 

4. Go to step 1. 

Before 2000, the best thing to do 

when designing new processors was 

increasing clock frequencies. Then 

CPU designers hit multiple major 

obstacles, and were no longer able 

to do so. On the right, there’s a nice 

picture I’ve found on the Internets. 

CPU manufacturing technology was 

and still is advancing fast, the CPU 

designers needed to come up with 

some new ideas how to use all these 

extra transistors to make faster 

processors, without being able to 

increase clock frequency. 

 
1 Modern PC programs almost never do I/O, because nowadays only OS kernel and drivers have direct access 
to hardware. Instead, they call some OS kernel API, which calls a device driver, which finally does the I/O. 

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
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One obvious approach is making more processors, i.e. increasing cores count. But many programs 

are not that parallel. And in modern world, these who are that parallel don’t run on CPUs, GPGPUs 

are more suitable for them and have way more compute power. 

Another approach is increasing size of CPU caches, but that improvement has diminishing returns, at 

some point program speed no longer limited with memory, you actually need to compute more 

stuff. 

Another approach (very complicated, nevertheless widely used in modern processors), running 

multiple instructions per clock with instruction-level parallelism, deep pipelining, speculative 

execution. Newer CPUs do it progressively better, but just like cache sizes this approach has 

diminishing returns. With deep pipelines, when processor mispredicts a branch, too much time is 

wasted, also too much stuff is required to rollback results of the false-started instructions. 

In addition to the above, CPU designers wanted to compute more stuff with same count of 

instructions. That’s why they have invented SIMD. 

Modern SIMD processors entered mainstream market with the release of Pentium III in 1999, and 

they never left. Technically MMX and 3DNow! were before that and they are SIMD, too, but they are 

too old, no longer relevant for developers. 

Even cell phones support SIMD now, the instruction set is called ARM NEON. But this article is 

focused on PC platform, so NEON is out of scope. 

Introduction to SIMD 
The acronym stands for “single instruction, multiple data”. In short, it’s an extension to the 

instruction set which can apply same operation onto multiple values. These extensions also define 

extra set of registers, wide ones, able to hold these multiple values in a single register. 

For example, imagine you want to compute squares of 4 floating point numbers. A straightforward 

implementation looks like this: 

void mul4_scalar( float* ptr ) 
{ 
 for( int i = 0; i < 4; i++ ) 
 { 
  const float f = ptr[ i ]; 
  ptr[ i ] = f * f; 
 } 
} 

Here’s a vectorized SIMD version which does the same thing: 

void mul4_vectorized( float* ptr ) 
{ 
 __m128 f = _mm_loadu_ps( ptr ); 
 f = _mm_mul_ps( f, f ); 
 _mm_storeu_ps( ptr, f ); 
} 

Unless C++ optimizer does a good job at automatic vectorization2, the scalar version compiles into a 

loop. That loop is short, so branch prediction fails 25% of iterations. The scalar code will likely 

contain some loop boilerplate, and will execute the body of the loop 4 times. 

 
2 In practice, they usually do a decent job for trivially simple examples like the above one. They often fail to 
auto-vectorize anything more complex. They rarely do anything at all for code which operates on integers, as 
opposed to floats or doubles. 

https://en.wikipedia.org/wiki/Instruction-level_parallelism
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The vectorized version contains 3 instructions and no loop. No branches to predict, very 

straightforward machine code that’s very fast to execute. By the way, when CPU vendors brag about 

stuff like “32 single-precision FLOPs/cycle”, what they actually mean, you’ll get that performance 

only if you’ll vectorize the hell out of your code, using maximum SIMD width available on the 

hardware. More information is available in FMA section of this document. 

The above example only requires SSE 1, will run on your grandmother’s Pentium III. SSE 1 operates 

on 16 bytes registers. In C and C++, these registers are exposed as __m128 data type: 128 bits = 16 

bytes. Each register contains 4 single-precision floating point numbers, and the instruction set has 8 

of these registers, they are named xmm0 to xmm7. 

SSE 2, introduced with Pentium 4 in 2000, added support for double-precision and integer SIMD 

instructions. They process same 8 registers, but for type safely these are exposed in C as __m128d 

and __m128i data types, respectively. Their length stayed the same 16 bytes, so there’re just 2 

double lanes there, compared to 4 single-precision float lanes in SSE 1. 

When AMD introduced their AMD64 architecture in 2003, they have incorporated SSE 2 as a part of 

their then-new instruction set. I’ll repeat it bold: every 64-bit PC processor in the world is required 

to support at least SSE 1 and SSE 2. At the same time, AMD added 8 more of these vector registers, 

the new ones are named xmm8 to xmm15. 

The mandatory support of SIMD opened a few 

possibilities. Modern compilers don’t usually emit old-

school x87 instructions when compiling 64-bit code which 

does math on float or double numbers. Instead, the 

compilers emit SSE 1 and SSE 2 instructions. The floating-

point math instructions have single-lane versions. The 

above snippet uses _mm_mul_ps intrinsic (compiles into 

mulps instruction) to compute squares of 4 numbers. 

SSE 1 has matching instruction that only multiplies one 

lowest lane, _mm_mul_ss, it compiles into mulss 

instruction. The upper 3 lanes are copied from the first 

argument without multiplying them. 

Apparently, CPU vendors viewed SIMD as a success, 

because they continued adding new vector instructions. 

SSE 3, SSSE 3 and SSE 4.1 all added new instructions operating on these SIMD registers. 

By now, these instruction sets are almost universally supported by mainstream CPUs. At the time of 

writing, steam hardware survey says 100.00% of users have SSE3, and 98.76% of them have SSE 4.1; 

expand “other settings” panel to see these numbers on that web page. 

Then in 2011 Intel introduced AVX in their Sandy Bridge processors. That version extended 16-byte 

registers into 32 bytes, so they now can hold 8 single-precision floats, or 4 doubles. Their count 

stayed the same, 16 registers. In assembly, new registers are named ymm0 to ymm15, and their lower 

128-bit halves are still accessible as xmm0 to xmm15. The same way the lowest byte of rax register is 

accessible as al. AVX supports operations on 32- and 64-bit floats, but not much for integers. 

Then in 2013 Intel introduced AVX 2. No new registers, but they have added integer math support 

there. Both AVX and AVX 2 are widely supported by now, but not yet universally so on desktops. See 

hardware support section for details. 

On modern PCs, the single-lane version 

takes exactly same time to execute as 

the wide version. The reason single-lane 

arithmetic instructions exist, it wasn’t 

always the case. Pentium III didn’t have 

128-bit wide arithmetic units, it did 128-

bit math by splitting lanes into 64-bit 

pieces, and computing them 

independently. The same way previous 

generation AMD Ryzen 1000- and 2000-

series didn’t have 256-bit wide 

arithmetic units, to execute AVX and 

AVX2 instructions they split the 

operands into 128-bit pieces. 

https://en.wikipedia.org/wiki/X87
https://store.steampowered.com/hwsurvey/
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Intel tried to proceed with AVX 512 but this time it didn’t work out. Maybe 32 bytes vector width is 

enough already. Maybe it takes too many transistors to implement or too much electricity to run. 

Maybe Intel was too greedy and asked too much money for IP license. 

Regardless on the reason, very few modern processors support AVX 512, all of them made by Intel. 

At the time of writing, Q1 2021, I think AVX 512 is safe to ignore. All consoles and 99% of PCs don’t 

support AVX 512. Current AMD chips are much faster than Intel, AVX 2 code running on AMD CPU 

will likely be faster than AVX 512 code running on a comparable Intel CPU.  For this reason, this 

article covers SIMD up to AVX 2. 

Why Care? 
I’ll first make a list of programmers who I think have good reasons to not care. 

• If you don’t write code that’s CPU or RAM bandwidth bound, you don’t care. Majority of web 

developers fall into this category, the CPU-bound heavy lifting happens in external systems like 

TCP/IP stack or database engines. 

• If you write code that does some math, but the actual math is implemented in external libraries. 

Many machine learning developers fall into this category, for the same reason they’re OK using 

Python and similar high-level but slow languages for their job. Some C++ folks are happy with 

vectorized algorithms implemented in HPC libraries like Eigen and MKL and don’t write 

performance-sensitive code of their own. 

• If you write code that’s not performance critical. Maybe a desktop app which idles most of the 

time waiting for user input. Maybe a cloud app where you have unlimited compute power as 

long as you have unlimited budget, and horizontal scaling is cheaper than optimizing code. 

• If you use a language that doesn’t have a good SIMD support. Languages like JavaScript or PHP 

usually don’t, but SIMD is not limited to C++, there’s solid support in modern .NET 

• If you write numerical code which runs on GPGPUs, using CUDA, DirectCompute, or OpenCL. 

• If you’re happy with OpenCL. It has its limitations, and it has very different programming model 

close to that one of GPUs, but if you’re OK with these limitations it might be easier to use than 

manual SIMD, while delivering comparable performance. 

Applications 
The obvious answer is “for code that multiplies long float32 vectors and inverts large matrices”, but 

it’s more than just that. Only the very first SSE 1 was limited to 32-bit floats. Personally, I’ve used it 

with great success in following areas. 

1. For video games, and similar stuff like CAD/CAM/CAE. There’s an awesome Microsoft’s library 

DirectXMath which already implements many useful algorithms on top of SIMD. Despite the 

name, it’s a general-purpose library, very useful for OpenGL and others. To use it efficiently, you 

need some understanding what it’s all about. There’s a third-party portable fork on github which 

compiles for Linux, OSX, iOS and Android, using either SSE or NEON SIMD depending on the 

target platform. 

2. For code dealing with large volumes of voxels. Regardless whether you have floats, integers or 

bits in these voxels, well-implemented manual vectorization can speed up your code by an order 

of magnitude. For bits, a single _mm_and_si128 instruction takes 0.33 to 0.25 CPU cycles to 

process 128 of them, you won’t get anywhere close with scalar code. 

http://eigen.tuxfamily.org/index.php?title=Main_Page
https://software.intel.com/en-us/mkl
https://docs.microsoft.com/en-us/dotnet/api/system.numerics.vector-1
https://en.wikipedia.org/wiki/OpenCL
https://github.com/Microsoft/DirectXMath
https://github.com/Napoleon314/XMath
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3. For video processing. I once needed to convert video frames on CPU from RGB32 into NV12. 

I needed code to run fast, as I had a video stream of these frames, up to 60 FPS at 3840×2160 

pixels / each. I’ve implemented and benchmarked a few versions, and the fastest one was SSE 2 

code doing 16-bit fixed point math. That time I haven’t tested AVX due to target platform 

limitation, I only did SSE 1, 2, 4.1, and FMA. 

4. For image processing. Images typically have quite a few pixels. 

5. For random stuff, both trivial and not. Here’s an example of trivial one. 

Hardware Support 
The table below summarizes when a particular instruction set was introduced. The backward 

compatibility is good in CPUs. After something is introduced it usually stays, AMD’s XOP and 3DNow 

are rare exceptions. In runtime you use CPUID at startup and check the bits it returns. This table is 

for design-time, when you’re targeting PCs and deciding which of them you want to use. 

 AMD Intel 

SSE 1 Athlon 64, 20033 Pentium III, 19993 

SSE 2 Athlon 64, 2003 Pentium 4, 2000 

SSE 3 Athlon 64 “Venice”, 2004 Pentium 4 “Prescott”, 2004 

SSSE 3 Bobcat and Bulldozer, 2011 Penryn, 2007; Bonnell, 2008. 

SSE 4.1 Jaguar, 2013; Bulldozer, 2011 Penryn, 2007; Silvermont, 2013. 

FMA Piledriver, 2012; not supported in Jaguar Haswell, 2013 

AVX 1 Jaguar, 2013; Bulldozer, 2011 Sandy Bridge, 2011 

AVX 2 Excavator, 2015 
Haswell, 2013 but only “Core i” and Xeon 
models, most Pentium and Celeron CPUs 
don’t support that. 

I think now in 2021 it’s OK to require SSE up to and including SSE 4.1, and SSSE 3, and fail at startup if 

not supported. 

About the rest of them (FMA, AVX 1, AVX 2), discretion is advised as the optimal tradeoff depends 

on the product. Videogames need compatibility, CAD/CAE software can specify hardware 

requirements, on servers you’re pretty much guaranteed to have AVX 2. When you need 

compatibility but newer instructions bring too much profit, either ship separate version of your 

binaries, or do runtime dispatch. A good way to implement runtime dispatch, only check the support 

once at application startup, and cache C function pointers, or maybe a pointer to abstract C++ class. 

Previous generation consoles (PlayStation 4, Xbox One) have AMD Jaguar inside. Current generation 

consoles (PlayStation 5, Xbox Series S and X) are using AMD Zen 2 which supports all of the above 

vector instruction sets. 

Programming with SIMD 
The main disadvantage of the technology is steep learning curve. It took me couple months to 

become somewhat familiar with the technology, and a year or so before I could say I’m comfortable 

using it. I had decades of prior experience programming classic C++, and years of prior experience 

programming GPUs. Didn’t help. CPU SIMD is very different from both of them. 

 
3 Before SSE 1, both Intel and AMD had other vector stuff: MMX, 3DNow!, and some extended variants of 
both. These have been superseded by modern SIMD instruction sets discussed in this article. 
Technically, MMX instructions still run on modern CPUs from both vendors, despite 22 years old. Most of the 
integer subset of SSE 2 is a direct copy-paste of MMX, operating on registers twice as wide. 

https://github.com/Const-me/vis_avs_dx/blob/968a3630ed8a90b01212d045336f4e9f31bb2deb/avs_dx/DxVisuals/Effects/Trans/Moves/GridMesh.radial.cpp#L241-L258
https://en.wikipedia.org/wiki/XOP_instruction_set
https://en.wikipedia.org/wiki/3DNow!
https://en.wikipedia.org/wiki/CPUID
https://en.wikipedia.org/wiki/Athlon_64
https://en.wikipedia.org/wiki/Pentium_III
https://en.wikipedia.org/wiki/Athlon_64
https://en.wikipedia.org/wiki/Pentium_4
https://en.wikipedia.org/wiki/Athlon_64#Venice_(90_nm_SOI)
https://en.wikipedia.org/wiki/Pentium_4#Prescott
https://en.wikipedia.org/wiki/Bobcat_(microarchitecture)
https://en.wikipedia.org/wiki/Bulldozer_(microarchitecture)
https://en.wikipedia.org/wiki/Penryn_(microarchitecture)
https://en.wikipedia.org/wiki/Bonnell_(microarchitecture)
https://en.wikipedia.org/wiki/Jaguar_(microarchitecture)
https://en.wikipedia.org/wiki/Bulldozer_(microarchitecture)
https://en.wikipedia.org/wiki/Penryn_(microarchitecture)
https://en.wikipedia.org/wiki/Silvermont
https://en.wikipedia.org/wiki/Piledriver_(microarchitecture)
https://en.wikipedia.org/wiki/Haswell_(microarchitecture)#List_of_Haswell_processors
https://en.wikipedia.org/wiki/Jaguar_(microarchitecture)
https://en.wikipedia.org/wiki/Bulldozer_(microarchitecture)
https://en.wikipedia.org/wiki/Sandy_Bridge#List_of_Sandy_Bridge_processors
https://en.wikipedia.org/wiki/Excavator_(microarchitecture)#Processors
https://en.wikipedia.org/wiki/Haswell_(microarchitecture)#List_of_Haswell_processors
https://en.wikipedia.org/wiki/Zen_2
https://en.wikipedia.org/wiki/MMX_%28instruction_set%29
https://en.wikipedia.org/wiki/3DNow!
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First it takes time to wrap the head around the concept. That all CPUs are actually vector ones, and 

every time you’re writing float a = b + c; you’re wasting 75% to 87.5% of CPU time, because it 

could have added 4 or 8 numbers with slightly different instruction, spending exactly same time. 

Then it takes much more time to get familiar with actual instructions. When I started learning the 

technology, I can remember few times when I spent hours trying to do something, come up with a 

solution that barely outperformed scalar version, only to find out later there’s that one special 

instruction which only takes a couple of them to do what I did in a page of code, improving 

performance by a factor of magnitude. 

Another thing, the documentation is not great. I hope I have fixed it to some extent, but still, that 

official guide is only useful when you already know which intrinsics do you need. Most developers 

don’t know what modern SIMD is capable of. I’m writing this article hoping to fix it. 

Data Types 
Most of the time you should be processing data in registers. Technically, many of these instructions 

can operate directly on memory, but it’s rarely a good idea to do so. The ideal pattern for SIMD 

code, load source data to registers, do as much as you can while it’s in registers, then store the 

results into memory. The best case is when you don’t have a result, or it’s very small value like bool 

or a single integer, there’re instructions to copy values from SIMD registers to general purpose ones. 

In C++, the registers are exposed as variables of the 6 

fundamental types. See the table on the right. In assembly 

code there’s no difference between registers of the same 

size, these types are just for C++ type checking. 

The compiler assigns variables to registers automagically, but remember there’re only 16 registers 

underneath the compiler. Or just 8 if you’re building a 32-bit binary. If you define too many local 

variables, and write code with many dependencies preventing compiler from reusing registers, the 

compiler will evict some variables from registers to RAM on the stack. In some edge cases, this may 

ruin the performance. Profile your software, and review what the compiler did to your C++ code on 

the performance critical paths. 

One caveat about these vector types, compilers define them as a structure or union with arrays 

inside. Technically you can access individual lanes of the vectors by using these arrays inside, the 

code compiles and works. The performance is not great, though. Compilers usually implement such 

code as a roundtrip from register to memory, and then back. Don’t treat SIMD vectors that way, use 

proper shuffle, insert or extract intrinsics instead. 

 16 bytes 32 bytes 

32-bit float __m128 __m256 

64-bit float __m128d __m256d 

Integers __m128i __m256i 

https://github.com/Const-me/IntelIntrinsics
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General Purpose Intrinsics 

Casting Types 
Assembly only knows about 2 vector data types, 16-bytes registers and 32-bytes ones. There’re no 

separate set of 16/32 byte registers, 16-byte ones are lower halves of the corresponding 32-bytes. 

But they are different in C++, and there’re intrinsics to re-interpret them to different types. In the 

table below, rows correspond to source types, and columns represent destination type. 

 __m128 __m128d __m128i __m256 __m256d __m256i 

__m128 = _mm_castps_pd 
_mm_castps_si12

8 
_mm256_castps12

8_ps256 
  

__m128d 
_mm_castpd_

ps 
= 

_mm_castpd_si12
8 

 
_mm256_castpd12

8_pd256 
 

__m128i 
_mm_castsi1

28_ps 
_mm_castsi128_p

d 
=   

_mm256_castsi12
8_si256 

__m256 
_mm256_cast
ps256_ps128 

  = 
_mm256_castps_p

d 
_mm256_castps_s

i256 

__m256d  
_mm256_castpd25

6_pd128 
 

_mm256_castpd_p
s 

= 
_mm256_castpd_s

i256 

__m256i   
_mm256_castsi25

6_si128 
_mm256_castsi25

6_ps 
_mm256_castsi25

6_pd 
= 

All these intrinsics compile into no instructions, so they’re practically free performance wise. They 

don’t change bits in the registers, so 32-bit 1.0f float becomes 0x3f800000 in 32-bit lanes of the 

destination integer register. When casting 16-byte values into 32 bytes, the upper half is undefined. 

Converting Types 
There’re also instructions to do proper type conversion. They only support signed 32-bit integer 

lanes. _mm_cvtepi32_ps converts 4 integer 32-bit lanes into 32-bit floats, _mm_cvtepi32_pd converts 

first 2 integers into 64-bit floats, _mm256_cvtpd_epi32 converts 4 doubles into 4 integers, setting 

higher 4 lanes of the output to zero. When converting from floats to integer, these instructions use 

rounding mode specified in MXCSR control and status register. See _MM_SET_ROUNDING_MODE macro 

for how to change that mode. That value is a part of thread state, so the OS persists the value across 

context switches4. 

There’re other ones with extra ‘t’ in the name which ignore MXCSR and always use truncation 

towards zero, like _mm_cvttpd_epi32 and _mm_cvttps_epi32. 

There’re also instructions to convert floats between 32- and 64-bit. 

Memory Access 
There’re many ways to load data from memory into registers. 

• All types support regular loads, like _mm_load_si128 or _mm256_load_ps. They require source 

address to be aligned by 16 or 32 bytes. They may crash otherwise but it’s not guaranteed, 

depends on compiler settings. 

• All types support unaligned loads, like _mm_loadu_si128 or _mm256_loadu_ps. They’re fine with 

unaligned pointers but aligned loads are faster. 

• __m128 and __m128d types support a few extra. They support single-lane loads, to load just the 

first lane and set the rest of them to 0.0, they are _mm_load_ss and _mm_load_sd. They support 

intrinsics to load them from memory in reverse order (requires aligned source address). 

 
4 That feature may cause hard to find numerical errors when SIMD is used in a thread pool environment, such 
as OpenMP. For this reason, instead of changing MXCSR I prefer SSE 4.1 rounding intrinsics. 

https://en.wikipedia.org/wiki/OpenMP
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• In AVX, __m128, __m256 and __m256d have broadcast load instructions, to load single float or 

double value from RAM into all lanes of the destination variable. Also __m256 and __m256d types 

have broadcast loads which read 16 bytes from RAM and duplicate the value in 2 halves of the 

destination register. 

• AVX 1 introduced masked load instructions, they load some lanes and zero out others.  

• AVX 2 introduced gather load instruction, like _mm_i32gather_ps, they take a base pointer, 

integer register with offsets, and also integer value to scale the offsets. Handy at times, 

unfortunately rather slow. 

• Finally, in many cases you don’t need to do anything special to load values. If your source data is 

aligned, you can just write code like __m128i value = *pointer; and it’ll compile into an 

equivalent of regular load. 

Similarly, there’s many ways to store stuff: aligned, unaligned, single-lane, masked in AVX 1. 

Couple general notes on RAM access. 

1. On modern PCs, RAM delivers at least 8 bytes per load. If you have dual-channel RAM, it delivers 

16 bytes. This makes it much faster to access memory in aligned 16- or 32-bytes blocks. If you 

look at the source code of a modern version of memcpy or memmove library routine, you’ll 

usually find a manually vectorized version which uses SSE 2 instructions to copy these bytes 

around. Similarly, when you need something transposed, it’s often much faster to load 

continuously in blocks of 16 or 32 bytes, then transpose in registers with shuffle instructions. 

2. Many instructions support memory source for one of the operands. When compiling for SSE-only 

targets, this requires aligned loads. When compiling for AVX targets, this works for both aligned 

and unaligned loads. Code like _mm_add_ps( v, _mm_loadu_ps( ptr ) ) only merges the load 

when compiling for AVX, while _mm_add_ps( v, _mm_load_ps( ptr ) ) merges for all targets 

because the load is aligned (but might crash in runtime if the passed address is not actually a 

multiple of 16 bytes). 

3. Most single-lane loads/store can only use lowest lane of destination/source register. If you’re 

implementing a reduction like sum or average, try to do so you have result in the first lane. The 

exceptions are _mm256_insertf128_ps, _mm256_insertf128_pd, _mm256_inserti128_si256 AVX 

instructions, they can load 16-byte vectors into higher half of the destination register with little 

to no performance penalty compared to regular 16-byte load. 

4. There’re instructions to load or store bypassing CPU caches, _mm[256]_stream_something. Can 

be useful for cases like video processing, when you know you’re writing stuff that will only be 

loaded much later, after you’ve processed the complete frame, and probably by another CPU 

core (L1 and L2 caches are per-core, only L3 is shared). 

5. Most current CPUs can do twice as many loads per cycle, compared to stores. 

Initializing Vector Registers 

Initializing with Zeros 

All the vector types have intrinsics like _mm_setzero_ps and _mm256_setzero_si256 to initialize a 

register with all zeros. It compiles into code like xorps xmm0, xmm0, xmm0. Zero initialization is very 

efficient because that XOR instruction has no dependencies, the CPU just renames a new register5. 

 
5 The hardware has much more than 16, it’s just 16 names in assembly. The hardware has thousands of them, 
the pipeline is deep and filled with in-flight instructions who need different versions of same logical registers. 
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Initializing with Values 

CPUs can’t initialize registers with constants apart from 0, but compilers pretend they can, and 

expose intrinsics like _mm[256]_set_something to initialize lanes with different values, and 

_mm[256]_set1_something to initialize all lanes with the same value. If the arguments are compile-

time constants, they usually compile into read-only data in the compiled binary. Compilers emit the 

complete 16/32 bytes value, and they make sure it’s aligned. if the arguments aren’t known at 

compile time, the compilers will do something else reasonable, e.g. if the register is mostly 0 and you 

only setting one lane they’ll probably emit _mm_insert_something instruction. If the values come 

from variables, the compiler may emit shuffles, or scalar stores followed by vector load. 

For all their _mm[256]_set_something intrinsics, Intel screwed up the order. To make a register with 

integer values [ 1, 2, 3, 4 ], you have to write either _mm_set_epi32( 4, 3, 2, 1 ) or 

_mm_setr_epi32( 1, 2, 3, 4 ). 

Bitwise Instructions 
Both floats and integers have a fairly complete set of bitwise instructions. All of them have AND, OR, 

XOR, and ANDNOT instructions. If you need bitwise NOT, the fastest way is probably XOR with all 

ones. Example for 16-byte values: 

__m128i bitwiseNot( __m128i x ) 
{ 
 const __m128i zero = _mm_setzero_si128(); 
 const __m128i one = _mm_cmpeq_epi32( zero, zero ); 
 return _mm_xor_si128( x, one ); 
} 

Whenever you need a register value with all bits set to 1, it’s often a good idea to do what I did here, 

setzero then compare zeroes with zeroes. 

Floating Point Instructions 

Arithmetic 
Most of them are available in all-lane versions, and single lane version which only compute single 

lane result, and copy the rest of the lanes from the first arguments. 

Traditional 

All 4 basic operations are implemented, add, subtract, multiply, divide. Square root instruction is 

also there, even for 64-bit floats. 

Unorthodox 

The CPU has minimum and maximum instructions. More often than not, modern compilers compile 

standard library functions std::min<float> / std::max<double> into _mm_min_ss / _mm_max_sd 

For 32-bit floats, CPUs implement faster approximate versions of 
1

𝑥
 and 

1

√𝑥
 They are _mm_rcp_ps and 

_mm_rsqrt_ps, respectively6. For both of them the documentation says “maximum relative error for 

this approximation is less than 1.5*2^-12”, translates to 3.6621 × 10−4 maximum relative error. 

SSE 3 has horizontal add and subtract instructions, like _mm_hadd_ps, which takes two registers with 

[a, b, c, d] and [e, f, g, h] and returns [a+b, c+d, e+f, g+h]. The performance is not great, though. 

 
6 I use them very rarely. On old CPUs like Pentium 3, it took 56 CPU cycles to compute non-approximated 
square root, and 48 cycles to divide vectors. Faster approximations made a lot of sense back then. However, 
modern CPUs like Skylake or Ryzen do that in 12-14 cycles, little profit from these faster approximations. 
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SSE 3 also has a couple of instructions which alternatively add and subtract values. _mm_addsub_ps 

takes two registers with [a, b, c, d] and [e, f, g, h] and returns [a-e, b+f, c-g, d+h]. _mm_addsub_pd 

does similar thing for double lanes. Handy for multiplying complex numbers and other things. 

SSE 4.1 includes dot product instruction, which take 2 vector registers and also 8-bit constant. It uses 

higher 4 bits of the constant to compute dot product of some lanes of the inputs, then lower 4 bits 

of the constant to broadcast the result. 

For instance, when SSE 4.1 is enabled, XMVector3Dot library function compiles into single instruction, 

this one: _mm_dp_ps( a, b, 0b01111111 ) The bits in the constant mean “compute dot product of 

the first 3 lanes ignoring what’s in the highest ones, and broadcast the resulting scalar value into all 

4 lanes of the output register”. The lanes for which the store bit is zero will be set to 0.0f. 

SSE 4.1 has introduced rounding instructions for both sizes of floats. For 32-bit floats, the all-lanes 

version is exposed in C++ as _mm_round_ps, _mm_ceil_ps, and _mm_floor_ps intrinsics. For AVX, Intel 

neglected to implement proper ceil/round intrinsics, they only exposed _mm256_round_ps and 

_mm256_round_pd which take extra integer constant specifying rounding mode. Use 

_MM_FROUND_NINT constant to round to nearest integer7, _MM_FROUND_FLOOR to round towards 

negative infinity, _MM_FROUND_CEIL to round towards positive infinity, or _MM_FROUND_TRUNC to round 

towards zero. 

Missing 

Unlike NEON, there’s no SSE instructions for unary minus or absolute value. The fastest way is 

bitwise tricks, specifically _mm_xor_ps( x, _mm_set1_ps( -0.0f ) ) for unary minus, 

_mm_andnot_ps( _mm_set1_ps( -0.0f ), x ) for absolute value. The reason these tricks work, 

-0.0f float value only has the sign bit set, the rest of the bits are 0, so _mm_xor_ps flips the sign and 

_mm_andnot_ps clears the sign bit making the value non-negative. 

There’s no logarithm nor exponent, and no trigonometry either. Intel’s documentation says 

otherwise, because Intel were writing their documentation for their C++ compiler, which 

implements them in its standard library. You can fall back to scalar code, or better search the web 

for the implementation. It’s not terribly complex, e.g. trigonometric functions are usually 

implemented as high-degree minmax polynomial approximation. For single-precision floats you can 

use XMVectorSin/XMVectorCos/etc. from DirectXMath, for FP64 use the coefficients from 

GeometricTools. 

Comparisons 
There’re all-lanes versions of equality comparison and the rest of them, <, >, ≤, ≥, ≠. These versions 

return another float register, that’s either all zeros 0.0f, or all ones. A float with all ones is a NAN. 

You can send the result from SIMD to a general-purpose CPU register with _mm_movemask_ps, 

_mm_movemask_pd or the corresponding AVX 1 equivalents. These instructions gather most significant 

bits of each float/double lane (that bit happen to be the sign bit, by the way), pack these bits into a 

scalar, and copy to a general-purpose CPU register. The following code prints 15: 

 const __m128 zero = _mm_setzero_ps(); 
 const __m128 eq = _mm_cmpeq_ps( zero, zero ); 
 const int mask = _mm_movemask_ps( eq ); 
 printf( "%i\n", mask ); 

 
7 More specifically, processors do bankers' rounding: when the fraction is exactly 0.5, the output will be 
nearest even number. This way 0.5 is rounded to 0, while 1.5 becomes 2. 

https://mathworld.wolfram.com/ComplexMultiplication.html
https://github.com/microsoft/DirectXMath
https://github.com/davideberly/GeometricTools/blob/GTE-version-5.9/GTE/Mathematics/SinEstimate.h
https://github.com/davideberly/GeometricTools/blob/GTE-version-5.9/GTE/Mathematics/SinEstimate.h
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
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The 0 == 0 comparison is true for all 4 lanes of __m128, the eq variable has all 128 bits set to 1, then 

_mm_movemask_ps gathers and returns sign bits of all 4 float lanes. 0b1111 becomes 15 in decimal. 

Another thing you can do with comparison results, use them as arguments to bitwise instructions to 

combine lanes somehow. Or pass them into blendv_something. Or cast to integer vectors and do 

something else entirely. 

Also, both 32- and 64-bit floats have instructions to compare just the lowest lanes of 2 registers, and 

return the comparison result as bits in the flags register accessible to general-purpose instructions: 

// Compare the first lane for `x > 0.0f` 
bool isFirstLanePositive( __m128 x ) 
{ 
 return (bool)_mm_comigt_ss( x, _mm_setzero_ps() ); 
} 

For AVX, Intel only specified two comparison intrinsics, _mm256_cmp_ps and _mm256_cmp_pd. To 

compare 32-byte vectors, you need to supply an integer constant for the comparison predicate, such 

as _CMP_EQ_OQ or other from that header. See this stackoverflow answer for more info on predicates. 

Shuffles 
These are instructions which reorder lanes. They are probably the most complicated topic about the 

subject. Here’s an example code which transposes a 4x4 matrix. To me it looks a bit scary, despite I 

understand pretty well what that code does. 

We’ll start with shuffle instructions processing 32-bit float lanes in 16-byte registers. On the images 

below, the left boxes represent what’s on input, the right one what’s on output. The A B C D values 

are lanes in these registers, the first one is on top. 

Fixed Function Shuffles 

_mm_movehl_ps SSE 1 

Move the upper 2 single-precision 
(32-bit) floating-point elements from 
"b" to the lower 2 elements of "dst", 
and copy the upper 2 elements from 
"a" to the upper 2 elements of "dst". 

 

_mm_movelh_ps SSE 1 

Move the lower 2 single-precision 
(32-bit) floating-point elements from 
"b" to the upper 2 elements of "dst", 
and copy the lower 2 elements from 
"a" to the lower 2 elements of "dst". 
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https://en.wikipedia.org/wiki/FLAGS_register
https://stackoverflow.com/a/64191351/126995
https://github.com/microsoft/DirectXMath/blob/939c1a86b28f0d10858601b80faa7845070687fb/Inc/DirectXMathMatrix.inl#L637-L655
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_mm_unpacklo_ps SSE 1 

Unpack and interleave single-
precision (32-bit) floating-point 
elements from the low half of "a" and 
"b", and store the results in "dst". 

 

_mm_unpackhi_ps SSE 1 

Unpack and interleave single-
precision (32-bit) floating-point 
elements from the high half "a" and 
"b", and store the results in "dst". 

 

_mm_movehdup_ps SSE 3 

Duplicate odd-indexed single-
precision (32-bit) floating-point 
elements from "a", and store the 
results in "dst". 

 

_mm_moveldup_ps SSE 3 

Duplicate even-indexed single-
precision (32-bit) floating-point 
elements from "a", and store the 
results in "dst". 

 

_mm_broadcastss_ps AVX 2 
Broadcast the low single-precision 
(32-bit) floating-point element from 
"a" to all elements of "dst". 
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Variable Compile Time Shuffles 

These instructions include the shuffle constant. This means you can’t change that constant 

dynamically, it has to be a compile-time constant, like C++ constexpr or a template argument. The 

following C++ code fails to compile: 

 const __m128 zero = _mm_setzero_ps(); 
 return _mm_shuffle_ps( zero, zero, rand() ); 

VC++ says “error C2057: expected constant expression” 

In the pictures below, blue arrows show what has been selected by the control value used for the 

illustration. Dashed gray arrows show what could have been selected by different control constant. 

_mm_shuffle_ps SSE 1 

Shuffle single-precision (32-bit) floating-
point elements. 
On the image on the right, the control 
constant was 10 01 10 00 = 0x98.  
The first 2 lanes come from the first 
argument, second 2 lanes from the second 
one. If you want to permute a single 
vector, pass it into both arguments. 

 

_mm_blend_ps SSE 4.1 

Blend packed single-precision (32-bit) 
floating-point elements from "a" and "b" 
using control mask. 
On the illustration on the right, the control 
was 1, it’s 0b0001 in binary, so only the 
first lane was taken from the second 
argument. 

 

_mm_insert_ps SSE 4.1 

Insert single float lane, and optionally zero 
out some lanes. 
The image on the right shows what 
happens when the control value is 
0b01100001 = 0x61: the source index is 1 
that’s why the  F  value is being inserted, 
the destination index is 2 so that value is 
inserted into lane #2, and the lowest 4 bits 
are 0001 so the output lane #0 is zeroed 
out. 
You can abuse this instruction to 
selectively zero out some lanes without 
inserting: pass same register in both 
arguments, and e.g. 0b00001001 control 
value to zero out lanes #0 and #3. 
The equivalent is _mm_blend_ps with 
_mm_setzero_ps second argument, but 
that’s 2 instructions instead of one. 

 

_mm_permute_ps AVX 1 
An equivalent of _mm_shuffle_ps with the same value in both 
arguments. Machine code of _mm_shuffle_ps is 1 byte shorter. 
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I’m too lazy to draw similar block diagrams for __m128d, __m256, and __m256d shuffles. Fortunately, 

Intel was lazy as well. The 64-bit float versions are very similar to 32-bit floats. The shuffle constants 

have only half of the bits for 64-bit floats, the idea is the same. 

As for the 32-byte AVX versions, the corresponding AVX instructions only shuffle/permute within 16-

bit halves of the register. Here’s from documentation of _mm256_shuffle_ps: Shuffle single-precision 

(32-bit) floating-point elements in "a" within 128-bit lanes. 

However, there’re also some new AVX2 shuffle instruction which can cross 16-byte lanes. 

_mm256_broadcastss_ps broadcasts the lowest lane into all 8 destination ones. Same applies to 

_mm256_broadcastsd_pd, it broadcasts a 64-bit float into all laned of the output. 

_mm256_permute2f128_ps, _mm256_permute2f128_pd, _mm256_permute2x128_si256 shuffle 16-byte 

lanes from two 32-byte registers, it can also selectively zero out 16-byte lanes. 

_mm256_permute4x64_pd and _mm256_permute4x64_epi64 permute 8-byte lanes within 32-byte 

registers. 

Variable Run Time Shuffles 

SSE 4.1 introduced _mm_blendv_ps instruction. It takes 3 arguments, uses sign bit of the mask to 

select lanes from A or B. 

No version of SSE has float shuffling instructions controllable in runtime. The closest one is 

_mm_shuffle_epi8 from SSSE3, see the corresponding section under integer instructions. If you 

really need that, you can cast registers to integer type, use _mm_shuffle_epi8, then cast back8. 

AVX 1 finally introduced one, _mm_permutevar_ps. It takes 2 arguments, float register with source 

values, and integer vector register with source indices. It treats integer register as 32-bit lanes, uses 

lower 2 bits of each integer lane to select source value from the float input vector. 

_mm256_permutevar8x32_ps from AVX 2 can move data across the complete 32-byte register. 

Fused Multiply-Add 
When processors vendors brag about how many FLOPs they can do per cycle, almost universally, 

they count FLOPs of their FMA instructions. 

FMA instructions take 3 arguments, each being either 32- or 64-bit floating point numbers, a, b and 

c, and compute ( a · b ) + c. For marketing reasons, that single operation counts as 2 FLOPs. 

Modern CPUs implement 8-wide FMA for 32-bit floats, _mm256_fmadd_ps intrinsic in C++, and 4-wide 

FMA for 64-bit floats, _mm256_fmadd_pd intrinsics. There’re versions which subtract instead of 

adding, flip sign of the product before adding. There’re even versions which alternately add or 

subtract, computing ( a · b ) + c for even lanes ( a · b ) − c for odd ones, or doing the opposite. 

It was probably added for complex numbers multiplication. 

There’re versions twice as narrow operating on 16-byte registers, 4-wide 32-bit floats FMA, and 2-

wide 64-bit floats FMA. 

These instructions process the same SIMD registers, __m128, __m128d, __m256 or __m256d C++ types. 

 
8 But beware of bypass delays between integer and floating-point domains. On some old CPUs the latency can 
be up to 2 cycles. For more info, see section 13.6 “Using vector instructions with other types of data than they 
are intended for” of “Optimizing subroutines in assembly language” article. 

https://en.wikipedia.org/wiki/Multiply–accumulate_operation#Fused_multiply–add
https://www.agner.org/optimize/optimizing_assembly.pdf
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Besides performance, FMA is also more precise. These instructions only round the value once, after 

they have computed both the product and the sum. The intermediate value has twice as many bits. 

The support for these instructions is wide but not universal. Both Intel and AMD support the 

compatible version of FMA, called FMA 3, in their CPUs released since 2012-2013. See hardware 

support section for more info. 

Another caveat, the latency of FMA is not great, 4-5 CPU cycles on modern CPUs. If you’re 

computing dot product or similar, have an inner loop which updates the accumulator, the loop will 

throttle to 4-5 cycles per iteration due to data dependency chain. To resolve, unroll the loop by a 

small factor like 4, use 4 independent accumulators, and sum them after the loop. This way each 

iteration of the loop handles 4 vectors independently, and the code should saturate the throughput 

instead of stalling on latency. See this stackoverflow answer for the sample code which computes 

dot product of two FP32 vectors. 

Integer Instructions 

Arithmetic 

Traditional 

Additions and subtractions are totally fine and do what you would expect, e.g. _mm_add_epi32 adds 

32-bit lanes of two integer registers. 

Moreover, for 8 and 16 bits, there’re saturated versions of them, which don’t overflow but instead 

stick to minimum or maximum values. For example, _mm_adds_epi8( _mm_set1_epi8( 100 ), 

_mm_set1_epi8( 100 ) ) will return a vector with all 8-bit lanes set to +127, because the sum is 200 

but maximum value for signed bytes is +127. Here’s more in-depth article on saturation arithmetic. 

There’s no integer divide instruction. Intel has integer divide implemented in the standard library of 

their proprietary compiler. If you’re dividing by a compile-time constant that’s the same for all lanes, 

you can write a function which divides same sized scalar by that constant, compile with 

https://godbolt.org/ and port to SIMD. For example, here’s what it compiled when asked to divide 

uint16_t scalar by 11, and here’s how to translate that assembly into SIMD intrinsics: 

// Divide uint16_t lanes by 11, all 8 of them in just two SSE 2 instructions. 
__m128i div_by_11_epu16( __m128i x ) 
{ 
 x = _mm_mulhi_epu16( x, _mm_set1_epi16( (short)47663 ) ); 
 return _mm_srli_epi16( x, 3 ); 
} 

Multiplication is tricky as well. _mm_mul_epi32 takes 2 values [a,b,c,d] [e, f, g, h], ignores half of the 

values, and returns register with 2 64-bit values [ a*e, c*g ] The normal version is _mm_mullo_epi32. 

Oh, and both are SSE 4.1. If you only have SSE 2, you’ll need workarounds. 

Unorthodox 

For most lane sizes there’re integer minimum and maximum instructions, e.g. _mm_max_epu8 (SSE 2) 

is maximum for uint8_t lanes, _mm_min_epi32 (SSE 4.1) is minimum for 32-bit integer lanes. 

SSSE 3 has absolute value instructions for signed integers. It also has horizontal addition and 

subtraction instructions, e.g. _mm_hsub_epi32 takes [a, b, c, d] and [e, f, g, h] and returns [a-b, c-d, e-

f, g-h]. For signed int16 lanes, saturated version of horizontal addition and subtraction is also 

available. 

For uint8_t and uint16_t lanes, SSE 2 has instructions to compute average of two inputs. 

https://stackoverflow.com/a/59495197/126995
http://felix.abecassis.me/2011/10/sse-saturation-arithmetic/
https://godbolt.org/
https://godbolt.org/z/3kZK4P
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The weirdest of them is probably _mm_sad_epu8 (SSE2) / _mm256_sad_epu8 (AVX2). The single 

instruction, which can run once per cycle on Intel Skylake, is an equivalent of the following code: 

array<uint64_t, 4> avx2_sad_epu8( array<uint8_t, 32> a, array<uint8_t, 32> b ) 
{ 
 array<uint64_t, 4> result; 
 for( int i = 0; i < 4; i++ ) 
 { 
  uint16_t totalAbsDiff = 0; 
  for( int j = 0; j < 8; j++ ) 
  { 
   const uint8_t va = a[ i * 8 + j ]; 
   const uint8_t vb = b[ i * 8 + j ]; 
   const int absDiff = abs( (int)va - (int)vb ); 
   totalAbsDiff += (uint16_t)absDiff; 
  } 
  result[ i ] = totalAbsDiff; 
 } 
 return result; 
} 

I think it was added for video encoders. Apparently, they treat AVX 2 register as a block of 8×4 

grayscale 8-bit pixels, and want to estimate compression errors. That instruction computes sum of 

errors over each row of the block. I’ve used it couple times for things unrelated to video codecs, it’s 

the fastest ways to compute sum of bytes: use zero vector for the second argument of 

_mm_sad_epu8, then _mm_add_epi64 to accumulate. 

Comparisons 
Only all-lane versions are implemented. The results are similar to float comparisons, they set 

complete lane to all zeroes or all ones. For example, _mm_cmpgt_epi8 sets 8-bit lanes of the output 

to either 0 or 0xFF, depending on whether the corresponding signed 8-bit values are greater or not. 

Protip: a signed integer with all bits set is equal to -1. A useful pattern to count matching numbers is 
integer subtract after the comparison: 
const __m128i cmp = _mm_cmpgt_epi32( val, threshold ); // Compare val > threshold 
acc = _mm_sub_epi32( acc, cmp ); // Increment accumulator where comparison was true 

Beware of integer overflows though. Rarely important for counting 32-bit matches (they only 
overflow after 4G of vectors = 64GB of data when using SSE2), but critical for 8 and 16-bit ones. One 
approach to deal with that, a nested loop where the inner one consumes small batch of values which 
guarantees to not overflow the accumulators, and outer loop which up-casts to wider integer lanes. 

There’re no unsigned integer comparison instructions. If you need them, here’s an example how to 
implement manually, on top of signed integer comparison. 
// Compare uint16_t lanes for a > b 
__m128i cmpgt_epu16( __m128i a, __m128i b ) 
{ 
 const __m128i highBit = _mm_set1_epi16( (short)0x8000 ); 
 a = _mm_xor_si128( a, highBit ); 
 b = _mm_xor_si128( b, highBit ); 
 return _mm_cmpgt_epi16( a, b ); 
} 

To compare integer lanes for a <= b, a good way (two fast instructions) is this: min( a, b ) == a. 

The move mask instruction is only implemented for 8-bit lanes. If you want results of 32-bit integer 

comparison in a general-purpose register, 1 bit per lane, one workaround is cast __m128i into __m128 

and use _mm_movemask_ps. Similar for 64-bit lanes, cast into __m128d and use _mm_movemask_pd. 

Shifts 

Whole Register Shift 

It can only shift by whole number of bytes. 
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The whole register shifts are _mm_srli_si128 and _mm_slli_si128 in SSE 2. AVX 2 equivalents like 

_mm256_slli_si256 independently shift 16-byte lanes, so the bytes that would have been shifted 

across 16-byte halves of the register become zeros. If you want to shift the entire 32-byte AVX 

register, you gonna need a workaround, see this stackoverflow answer. 

SSSE 3 has _mm_alignr_epi8 instruction. Takes 16 bytes in one register, 16 bytes in another one, 

concatenates them into 32-bit temporary result, shifts that one right by whole number of bytes, and 

keep the lowest 16 bytes. 

Individual Lanes Shift 

SSE 2 has instructions which encode shift amount in the opcodes, and versions which take it from 

the lowest lane of another vector register. The shift amount is the count of bits to shift, it’s applied 

to all lanes. Right shift instructions come in two versions, one shifting in zero bits, another shifting in 

sign bits. _mm_srli_epi16( x, 4 ) will transform 0x8015 value into 0x0801, while _mm_srai_epi16( 

x, 4 ) will transform 0x8015 into 0xF801. They likely did it due to the lack of integer division: 

_mm_srai_epi16( x, 4 ) is an equivalent of x/16 for signed int16_t lanes. 

Variable Shifts 

AVX2 introduced instructions which shift each lane by different amount taken from another vector. 

The intrinsics are _mm_sllv_epi32, _mm_srlv_epi32, _mm_sllv_epi64, _mm_srlv_epi64, and 

corresponding 32-bytes versions with _mm256_ prefix. Here’s an example which also uses the rest of 

the integer shifts. 

Pack and Unpack 
Unlike floats, the same data types, __m128i and __m256i, can contain arbitrary count of lanes. 

Different instructions view them as 8-, 16-, 32-, or 64-bit lanes, either signed or unsigned. There’re 

many instructions to pack and unpack these lanes. 

Unpack instructions come in 2 versions. unpacklo_something unpacks and interleaves values from 

the low half of the two registers. For example, _mm_unpacklo_epi32 takes 2 values, [a,b,c,d] and 

[e,f,g,h], and returns [a,e,b,f]; _mm_unpackhi_epi32 takes 2 values, [a,b,c,d] and [e,f,g,h], and returns 

[c,g,d,h]. One obvious application, if you supply zero for the second argument, these instructions will 

convert unsigned integer lanes to wider ones, e.g. 8-bit lanes into 16-bit ones, with twice as few 

lanes per register. 

The opposite instructions, for packing lanes, come in 2 versions, for signed and unsigned integers. All 

of them use saturation when packing the values. If you don’t want the saturation, bitwise AND with 

a constant like _mm_set1_epi16( 0xFF ) or _mm_set1_epi32( 0xFFFF )9 , and unsigned saturation 

won’t engage. 

_mm_packs_epi16 takes 2 registers, assumes they contain 16-bit signed integer lanes, packs each 

lane into 8-bit signed integer using saturation (values that are greater than +127 are clipped to +127, 

values that are less than -128 are clipped to -128), and returns a value with all 16 values. 

_mm_packus_epi16 does the same but it assumes the input data contains 16-bit unsigned integer 

lanes, that one packs each lane into 8-bit unsigned integer using saturation (values that are greater 

than 255 are clipped to 255), and returns a value with all 16 values. 

 
9 Or you can build the magic numbers in code. It takes 3 cycles, setzero, cmpeq_epi32, unpacklo_epi8/ 
unpacklo_epi16. In some cases, can be measurably faster than a RAM load to fetch the constant. 

https://stackoverflow.com/a/66186973/126995
https://stackoverflow.com/a/63759887/126995
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Before AVX2, unpacking with zeroes was the best way to convert unsigned integers to wider size. 

AVX2 introduced proper instructions for that, e.g. _mm256_cvtepu8_epi32 takes 8 lowest bytes of the 

source, and converts these bytes into a vector with 8 32-bit numbers. These instructions can even 

load source data directly from memory. 

Shuffles 
Besides pack and unpack, there’re instructions to shuffle integer lanes. 

_mm_shuffle_epi32 SSE 2 

Shuffle 32-bit integer lanes. 
The picture on the right is for the 
shuffle constant 0b00001101 
which is 0x0D in hexadecimal. 

 

_mm_shufflelo_epi16 SSE 2 

Shuffles lower 4 of the 16-bit 
integer lanes. The upper 64 bit is 
copied from source do 
destination. The picture on the 
right is for shuffle constant 0x0D. 

 

_mm_shufflehi_epi16 SSE 2 
Similar to the above, copies the lower 4 lanes, and shuffles 
the higher 4 lanes into the higher lanes of the result. 

_mm_insert_epi16 SSE 2 

Insert a 16-bit integer value. 
Unlike the floating-point inserts, 
the integer to insert  V  comes 
from a general-purpose register. 
If you have it in another vector 
register, you may want to do 
something else, like a shift 
followed by blend. The index 
where to insert is encoded into 
the instruction. On the picture to 
the right, that index was 6. 

 
_mm_insert_epi8, 
_mm_insert_epi32, 
_mm_insert_epi64 

SSE 4.1 Similar to the above but inserts 8-, 32- or 64-bit lanes. 

_mm_shuffle_epi8 SSSE 3 
Shuffle 8-bit lanes, taking shuffle indices from another 
vector register. See the separate section of this article for 
more information. 

A 

B 

C 

D 

 

B 

D 

A 

A 

 
A 

B 

C 

D 

E 

F 

G 

H 

 

B 

D 

A 

A 

E 

F 

G 

H 

 

A 

B 

C 

D 

E 

F 

G 

H 

 

A 

B 

C 

D 

E 

F 

V 

H 

 
V 

 



SIMD for C++ Developers © 2019-2021 Konstantin, http://const.me page 20 of 23 
 

_mm_blend_epi16 SSE 4.1 

Blend 16-bit lanes. The blend bit 
mask is encoded into the 
instruction. 
On the illustration to the right, 
that constant was 0b10111000 = 
0xB8 

 

_mm_blend_epi32 AVX 2 
Similar to the above, but blends 32-bit lanes instead of 16-
bit ones, and marginally faster. 

_mm_blendv_epi8 SSE 4.1 

Blends 8-bit lanes, but unlike the rest of them, blending bit 
mask is not encoded in the instruction, it comes from 
another, third input register. The instruction uses highest 
bit of each 8-bit lane to select each lane of the result from 
either of the two first input registers. 

_mm256_ 
permutevar8x32_epi32 

AVX 2 
A rare instruction which can permute values across 128-bit 
lanes, and the permite constants are not encoded in the 
instruction. 

_mm_broadcastb_epi8, 
_mm_broadcastw_epi16, 
_mm_broadcastd_epi32, 
_mm_broadcastq_epi64 

AVX 2 

Broadcast the lowest lane to the 
rest of them. The picture to the 
right is for 
_mm_broadcastd_epi32 
instruction. 

 

_mm_shuffle_epi8 
This instruction is a part of SSSE 3 set, and it deserves a dedicated section in this article. It’s the only 

SSE instruction that implements runtime-variable shuffles. Unlike the rest of the shuffles, this one 

takes shuffle values from a vector register. Here’s a C++ equivalent of that instruction: 

array<uint8_t, 16> shuffle_epi8( array<uint8_t, 16> a, array<uint8_t, 16> b ) 
{ 
 array<uint8_t, 16> result; 
 for( int i = 0; i < 16; i++ ) 
 { 
  const uint8_t mask = b[ i ]; 
  if( 0 != ( mask & 0x80 ) ) 
   result[ i ] = 0; 
  else 
   result[ i ] = a[ mask & 0xF ]; 
 } 
 return result; 
} 
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Only unlike the above C++ code with the loop, _mm_shuffle_epi8 has 1 cycle latency, and the 

throughput is even better, the computer I’m using to write this article can run 2 or them per clock. 

Can be quite useful in practice. Here’s one example which uses the first argument as a lookup table, 

and the second one as indices to lookup, to compute Hamming weight of integers. In some cases, 

that version can be faster than dedicated POPCNT instruction implemented in modern CPUs for 

counting these bits. Here’s another, this one uses it for the intended purpose, to move bytes around. 

The AVX 2 equivalent, _mm256_shuffle_epi8, shuffles within 128-bit lanes, applying the same 

algorithm onto both 128-bit pieces, using the corresponding piece of the second argument for 

shuffle control values. 

Miscellaneous Vector Instructions 
There’re intrinsics to copy the lowest lane from vector register into general purpose one, such as 

_mm_cvtsi128_si32, _mm_cvtsi128_si64. And the other way too, _mm_cvtsi32_si128, 

_mm_cvtsi64x_si128, they zero out the unused higher lanes. 

Similar ones are available for both floats types, _mm_cvtss_f32, but only 1 way, from vector register 

to normal C++ floats. For the other way, to convert scalar floats into SIMD registers, I usually use 

_mm_set_ps or _mm_set1_ps. Scalar floats are often already in SIMD registers, compilers need to do 

very little work, maybe nothing at all, maybe a shuffle. 

_mm_extract_epi16 (SSE 2) extracts any of the 16-bit lanes (index encoded in the instruction) and 
returns the value in general purpose register. _mm_extract_epi8, _mm_extract_epi32, 
_mm_extract_epi64, _mm_extract_ps (all SSE 4.1) do the same for other lane sizes. The interesting 
quirk about _mm_extract_ps, it can return 32-bit float in a general-purpose integer register like eax. 

Another useful SSE 4.1 instruction is ptest. It takes 2 vector registers, computes bitwise ( a & b ) 

and sets one flag if each and every bit of the result is 0. It also computes ( ( ~a ) & b ), and sets 

another flag if that value is exactly 0 on all bits. These flags are readable by general-purpose CPU 

instructions. It’s exposed in C++ as multiple intrinsics, _mm_testz_si128, _mm_testnzc_si128, 

_mm_test_all_zeros, _mm_test_all_ones, etc. 

SSSE 3 has a few unusual integer instructions. _mm_mulhrs_epi16 does something like this to signed 

int16_t lanes: return (int16_t)( ( (int)a * (int)b + 0x4000 ) >> 15 ) I have used it to apply 

volume to 16-bit PCM audio. _mm_sign_something multiplies signed lanes by signs of corresponding 

lane in the second argument, either -1, 0 or +1. _mm_maddubs_epi16 does an equivalent of the 

following C++ code: 

array<int16_t, 8> mad_bs( array<uint8_t, 16> a, array<int8_t, 16> b ) 
{ 
 array<int16_t, 8> result; 
 for( int i = 0; i < 16; i += 2 ) 
 { 
  const int p1 = (int16_t)a[ i ] * (int16_t)b[ i ]; 
  const int p2 = (int16_t)a[ i + 1 ] * (int16_t)b[ i + 1 ]; 
  int sum = p1 + p2; 
  sum = std::max( sum, -32768 ); 
  sum = std::min( sum, +32767 ); 
  result[ i / 2 ] = (int16_t)sum; 
 } 
 return result; 
} 

Besides integer and floating-point math, modern CPUs can do other things with these vector 

registers. Hardware AES and SHA cryptographic algorithms are implemented on top of them. Intel 

https://stackoverflow.com/a/17355341/126995
https://en.wikipedia.org/wiki/Hamming_weight#Processor_support
https://stackoverflow.com/a/66100774/126995
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implemented some strange string-handling instructions in SSE 4.2. This article covers general-

purpose programming with focus on numerical computations, they aren’t covered here. 

Random Tips and Tricks 
First and foremost, it doesn’t matter how fast you crunch your numbers if the source data is 

scattered all over the address space. RAM access is very expensive these days, a cache miss can cost 

100-300 cycles. Caches are faster than that but still slow, L3 cache takes 40-50 cycles to load, L2 

cache around 10 cycles, even L1 cache is noticeably slower to access than registers. Keep your data 

structures SIMD-friendly. Prefer std::vector or equivalents like CAtlArray or eastl::vector over 

the rest of the containers. When you read them sequentially, prefetcher part of the CPU normally 

hides RAM latency even for very large vectors which don’t fit in caches. If your data is sparse, you 

can organize it as a sparse collection of small dense blocks, where each block is at least 1 SIMD 

register in size. If you have to traverse a linked list or a graph while computing something for each 

node, sometimes _mm_prefetch intrinsic helps. 

For optimal performance, RAM access needs to be aligned10. If you have std::vector<__m128> the 

standard library should align automatically, but sometimes you want aligned vectors of floats or 

types like DirectX::SimpleMath::Vector3 which don’t have sufficient natural alignment. For these 

cases, you can use custom allocator, tested on Windows and Linux. 

When you’re dealing with pairs of 32-bit float numbers (like FP32 vectors in 2D), you can load/store 

both scalars with a single instruction intended for FP64 numbers. You only need type casting for the 

pointer, and _mm_castps_pd / _mm_castpd_ps intrinsics for casting vectors. Similarly, you can abuse 

FP64 shuffles/broadcasts to move pairs of FP32 values in these vectors. Old CPUs have latency 

penalty for passing vectors between integer and float parts of CPU cores, but that’s irrelevant 

because FP32 and FP64 are both floats. 

There’re good vectorized libraries for C++: Eigen, DirectXMath, couple of others. Learn what they 

can do and don’t reinvent wheels. They have quite complex stuff already implemented there. If you 

enjoy looking at scary things, look at the source code of SSE version of 

XMVector3TransformCoordStream library routine. 

When you’re implementing complex SIMD algorithms, sometimes it’s a good idea to create C++ 

classes. If you have a class with a couple of __m128 fields, create it on the stack, and never create 

references nor pointers to it, VC++ compiler normally puts these fields in SIMD registers. This way 

there’s no class anywhere in machine code, no RAM loads or stores, and the performance is good. 

There’s still a class in C++, when done right, it makes code easier to work with and reason about. 

Same often applies to small std::array-s of SIMD vectors, or C arrays. 

Don’t write static const __m128 x = something(); inside functions or methods. In modern C++ that 

construction is guaranteed to be thread safe. To support the language standard, a compiler has to 

emit some boilerplate code, which gonna have locks and branches. Instead, you can place that value 

in a global variable so they’re initialized before main() starts to run, or for DLLs before LoadLibrary 

of your DLL returns. Or you can place that value in a local non-static const variable. 

<xmmintrin.h> library header has a macro to make shuffle constants for _mm_shuffle_ps and 

_mm_shuffle_epi32, _MM_SHUFFLE. 

 
10 More specifically, the memory access should not cross cache line boundary. Cache line size is 64 bytes and 
they are aligned by 64. When SIMD vectors are aligned properly (by 16 bytes for SSE, or by 32 bytes for AVX 
vectors), a memory access is guaranteed to only touch a single cache line. 

https://github.com/Const-me/MemoryAccessCosts/blob/master/Align.hpp
https://github.com/microsoft/DirectXMath/blob/939c1a86b28f0d10858601b80faa7845070687fb/Inc/DirectXMathVector.inl#L10707-L11013
https://docs.microsoft.com/en-us/windows/win32/api/directxmath/nf-directxmath-xmvector3transformcoordstream
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When compiling for 32-bit, all the general-purpose registers are 32-bit as well. SIMD intrinsics which 

move 64-bit integers between SIMD registers and general-purpose ones are not available on the 

platform. To work around, use load/store, or fetch two 32-bit values with separate instructions. 

If you use VC++, spam __forceinline on performance-critical SIMD functions which are called from 

hot loops. Code often contains magic numbers, also variables which don’t change across iterations. 

Unlike scalar code, SIMD magic numbers often come from memory, not from the instruction stream. 

When compiler is told to __forceinline, it can load these SIMD constants once, and keep them in 

vector registers across iterations. Unless they are evicted to RAM due to registers shortage. Without 

inlining, the code will be reloading these constants in consuming functions. I’ve observed 20% 

performance improvement after adding __forceinline keywords everywhere. Apparently, VC++ 

inlining heuristics are tuned for scalar code, and fail for code with SIMD intrinsics. 

Unfortunately, this means you probably can’t use C++ lambdas on hot paths, as there’s no way to 

mark lambda’s operator() with __forceinline. You’ll have to write custom classes instead, class 

methods and operators support __forceinline just fine. 

If you’re using gcc or clang to compile your code, they’re better with inlining but forcing may still 

help sometimes, you can define __forceinline as a macro: 
#define __forceinline inline __attribute__((always_inline)) 

If you’re implementing dynamic dispatch to switch implementation of some vector routines based 

on supported instruction set, apply __vectorcall convention to the function pointers or virtual class 

methods. Such functions pass arguments and return value in vector registers. Can be measurable 

difference for 32-bit binaries. The default 64-bit convention ain’t that bad, you probably won’t get 

much profit for your 64-bit builds. 

Agner Fog has resources for SIMD programming on his web site. The “Optimizing subroutines in 

assembly language” is extremely useful, also timings tables. He also has a vector class library with 

Apache license. I don’t like wrapper classes approach: sometimes compilers emit suboptimal code 

due to these classes, many available instructions are missing from the wrappers, vectorized integer 

math often treats vectors as having different lanes count on every line of code so you’ll have to cast 

them a lot. But parts like floating point exponent, logarithm and trigonometry are good. 

Speaking of timing tables, this web site is an awesome source of performance-related data for 

individual instructions: https://www.uops.info/table.html 

https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions
https://www.agner.org/optimize/
https://www.agner.org/optimize/optimizing_assembly.pdf
https://www.agner.org/optimize/optimizing_assembly.pdf
https://www.uops.info/table.html

