
Fast Approximate Convex Hull
© const.me, 2017

Abstract
I present a method to compute an approximation of a convex hull. The complexity is O(N), and it’s

accurate enough for practical applications.

Introduction

What is Convex Hull?
From Wikipedia: the convex hull of a set X of points in the Euclidean space is the smallest convex set

that contains X. For instance, when X is a bounded subset of the plane, the convex hull may be visualized

as the shape enclosed by a rubber band stretched around X.

This article focuses on convex hulls of 3D triangular meshes and 3D point clouds, on x86 and AMD64

platforms, with single precision floating-point data on input.

Practical Applications
For a class of problems, a convex hull is just as good as the original data set. For example, a convex hull

is enough to build an axis-aligned bounding box with arbitrary-directed axis. It’s enough to do collision

detection against a plane. Optimizing these two use cases were the main reasons I’ve developed the

algorithm.

A convex hull only contains the outer points of the set. When the set contains many inner points, a

convex hull is much smaller than the original set, and these algorithms will work much faster processing

the convex hull.

Building the Convex Hull
Unfortunately, for large datasets (millions of points), building a precise convex hull is prohibitively

expensive. Theoretically, the complexity is 𝑂(𝑁 ∙ log(𝑁)). Practically, the constant component is large,

and memory access patterns are random, i.e. for large input dataset the algorithm will likely be RAM

latency bound.

Approximate Convex Hull
The idea of the algorithm is following.

Pick a center point somewhere inside the hull.

Divide all space into a finite set of small solid angles around the center. In this article, we’ll call a single

solid angle “a bucket”.

Group input points into these buckets.

For each bucket, find the input point with the largest distance from the center.

Drop the rest of the points from the set.

https://en.wikipedia.org/wiki/Convex_hull

The Algorithm
The algorithm reads input data twice.

On the first pass, it calculates the center of the data set. Both center of bounding box, and center of

mass are suitable for the center. Center of bounding box is faster to compute, because for center of

mass you’ll need to read both vertex buffer and index buffer, and calculate area of each triangle. Center

of mass of the vertices won’t work because many real-life models have very different triangle density in

different parts of the model. For example, a typical human head model is very detailed around eyes and

very coarse on the back.

On the second pass, it calculates the approximate hull.

First, calculate bucket ID for a pointi. Compute a radius vector, i.e. the vector between the point and the

center. Normalize the radius vector making it unit-length. Multiply it by a scalar constant R, the

reasonable value for R is between 20 and 100. Round all three coordinates of the vector to the nearest

integer. Use the integer coordinates vector as the bucket ID.

This bucket ID is very fast to compute, especially with SIMD.

The bucket ID serves as key in the unordered map. If there’s no value for the ID, the algorithm inserts a

new one, saving original input point, and distance from the point to the center. If there’s already some

value for the ID, the algorithm compares the current distance with the previous distance, and if the

current point is farther away from the center, it replaces the value in the map.

After the second pass is complete, that unordered map will contain the points of the approximate

convex hull. If you need topology not just points, producing it is not hard, but outside of scope of this

article.

Further Optimizations
Because we know all three components of the bucket ID are between -R and +R, it’s possible to optimize

the map performance by compacting the key from 3-components integer vector to just a single integer.

With uint32_t keys, there’s space for 10 bits per component, i.e. it’s sufficient for R < 511.

If you’re implementing it with SIMD, instead of comparing the distance, better to keep and compare the

inverse if that,
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 The inverse value is just as good at finding out which of the 2 points are closer to

the center. The reason for the inverse is _mm_rsqrt_ps intrinsic (that stands for RSQRTPS instruction)

that calculates
1

√𝑥
 in just a couple of CPU cycles. You need to calculate that inverse value anyway, to

normalize the radius vector.

For the best performance, don’t use std::unordered_map. Instead, pick a functionally equivalent hash

map container that delivers better memory locality. The examples of suitable containers are Microsoft’s

CAtlMap and Google’s dense_hash_map.

How much data it produces?

The result size is independent of the input dataset size. The theoretical limit is about
3

2
∙ 4𝜋𝑅2 vertices.

https://en.wikipedia.org/wiki/SIMD
https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
https://c9x.me/x86/html/file_module_x86_id_282.html
https://math.stackexchange.com/a/2373552/467444

How Fast?
Here is some benchmarks against qhull.org. The compiler is Visual C++ 14, 64 bit. The environment is my

desktop PC, i5-4460, 16GB RAM, Windows 10.

Model Triangles
FACH qhull.org

milliseconds vertices milliseconds vertices

Teapot 1024 0.137 468 2.44 164

Bunny 259898 33.2 25427 364 6053

Piedad 969522 96.1 31103 582 1592

Another
model

1178726 63.3 13468 1100 8846

As you see, the proposed FACH algorithm is much faster, by an order of magnitude. Especially for larger

models. However, it generally produces more vertices on output.

For all these benchmarks, R constant for FACH algorithm was 50.0.

Limitations
While extremely fast, the proposed algorithm is not accurate at all.

One problem is quantization. When multiple input points fall into in the same bucket, and all of them

have similar distance to the center, it’s perfectly possible all of them would be a part of the precise

convex hull. The described algorithm however will only use a single point with maximum distance from

the center, dropping the rest of the points. A trivial edge case demonstrating this problem is 1000×1×1

box: the result will only contain 2 points instead of 8. As a workaround, I only use the approximate hull

algorithm with large enough input datasets. For small input sets, just a unique set of points is almost as

fast.

Another problem is the result isn’t actually convex. If you’ll visualize the result, for most input sets you’ll

see a star-like polyhedron instead of a convex thing.

Despite the limitations, for some practical applications the data is just as useful as the true convex hull

would be.

i You might wonder why I’ve picked this particular method to partition the space into solid angles.

The naïve approach is calculating latitude + longitude, and quantizing the values into a fixed set of

integer values. One problem, this division is very uneven. The buckets near the poles will be much

smaller than the buckets near the equator, and I wanted the division to be more or less isotropic.

Another thing, inverse trigonometry functions are relatively slow to compute. The scalar FPATAN

instruction takes hundreds of cycles, and SSE approximate version isn’t trivial either.

The most accurate approach, build an icosphere (an icosahedron with progressively subdivided
triangles), project points to the icosphere, and use the icosphere’s face index for the bucket ID. While
this division is very even, I don’t know a fast enough method to calculate that face index given a radius
vector of a point.

http://www.qhull.org/
https://c9x.me/x86/html/file_module_x86_id_106.html
https://c9x.me/x86/html/file_module_x86_id_106.html
https://github.com/to-miz/sse_mathfun_extension/blob/master/sse_mathfun_extension.h#L260

